生活资讯
可视化 、可视化数据分析
2023-04-11 00:25  浏览:48

常用的数据可视化方式有哪些?

1、面积尺寸可视化

对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同目标对应的目标值之间的比照。

这种办法会让阅读者对数据及其之间的比照一目了然。制作这类数据可视化图形时,要用数学公式核算,来表达准确的标准和份额。

2、颜色可视化

经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。

3、图形可视化

在咱们规划目标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表愈加生动的被展示,更便于用户了解图表要表达的主题。

4、地域空间可视化

当目标数据要表达的主题跟地域有关联时,咱们一般会挑选用地图为大布景。

这样用户能够直观的了解全体的数据情况,同时也能够依据地理位置快速的定位到某一区域来查看详细数据。

5、概念可视化

经过将笼统的目标数据转换成咱们熟悉的简单感知的数据时,用户便更简单了解图形要表达的意义。

数据可视化的16个经典案例

[数据可视化]

本文编译自:Ross Crooks

数据可视化是指将数据以视觉的形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。通过观察数字、统计数据的转换以获得清晰的结论并不是一件容易的事。而人类大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释数据模式、趋势、统计数据和数据相关性,而这些内容在其他呈现方式下可能难以被发现。

数据可视化可以是静态的或交互的。几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。

我们必须用一个合乎逻辑的、易于理解的方式来呈现数据。但是,并非所有数据可视化作品的效果都一样好。那么,如何将数据组织起来,使其既有吸引力又易于理解?让我们通过下面的16个有趣的例子获得启发,它们是既注重风格也注重内容的数据可视化经典案例。

1:为什么会有“巴士群”现象

这里有一个关于复杂数据集的很好的例子,它看起来感觉像一个游戏。在这个例子里,Setosa网站为我们呈现了“巴士群”现象是如何发生的,即当一辆巴士被延迟,就会导致多辆巴士在同一时间到站。

只用数字讲述这个故事是非常困难的,所以取而代之的是,他们把它变成一个互动游戏。当巴士沿着路线旋转时,我们可以点击并按住一个按钮来使巴士延迟。然后,我们所要做的就是观察一个短暂的延迟如何使巴士在一段时间以后聚集起来。

2:世界上的语言

这个由DensityDesign设计的互动作品令人印象深刻,它将世界上众多(或者说,我们大多数人)语言用非语言的方法表现出来,一共有2678种。

这件作品可以让你浏览使用共同语言的家庭,看看哪些语言是最常用的,并查看语言在世界各地的使用范围。这是一种了不起的视觉叙事方法:将一个有深度的主题用一种易于理解的方式进行解读。

3:按年龄段分布的美国人口百分比

应该用什么方式去呈现一种单一的数据?这是一个令人信服的好榜样。

Pew Research创造了这个GIF动画,显示人口统计数量随着时间推移的的变化。这是一个好方法,它将一个内容较多的故事压缩成了一个小的动图包。此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。

4:NFL(国家橄榄球联盟)的完整历史

体育世界有着丰富的数据,但这些数据并不总是能有效地呈现。然而,FiveThirtyEight网站做得特别好。

在下面这个交互式可视化评级中,他们对国家橄榄球联盟史上的每一场比赛计算“等级分” – – 根据比赛结果对球队实力进行简单的衡量 。总共有超过30,000个评级,观众可以通过比较各个队伍的等级分来了解每个队伍在数十年间的比赛表现。

5:Google Flights 上的美国感恩节

下面是将一段时间内在空中移动的物体进行可视化的好方法。这是由Google Trends驱动的项目,它跟踪感恩节前出发、到达和穿越美国的航班。

可视化始于当天很早的时间,随着时间的推移,像播放电影一样显示在全国各地飞行中的航班。不需要显示时间外的任何数字,观众即可以看到当天哪段时间是国际航班、国内航班以及往返于全国各地不同枢纽的航班的热门时间。

6:是什么真正造成了全球变暖?

我们都知道,“不要只简单地展示数据,讲个故事吧”。这正是彭博商业正在做的可视化 ——用互动的方式来讲述故事的来龙去脉。。

此图的关键是要反驳用自然原因解释全球变暖的理论。首先你会看到从1880年至今观测到的温度上升情况。为了使故事内容更加丰富,当你向下滚动时,这个可视化图会让你清楚的了解到相较于已被观测到的因素,造成全球变暖的不同因素到底有多少。作者希望观众能够得到非常清晰的结论。

7:在叙利亚,谁和谁在战斗?

许多不同的团体之间的关系可能令人很难理解 – 尤其是当有11个这样的团体存在的时候。这些团体之间有的结盟,有的敌对,反之亦然。这让人难以理解。

但是,Slate网站通过表格的形式和熟悉的视觉表达,将这些数据简化为一种简单的、易于理解和可交互的形式。观众可以点击任一张脸来查看双方关系的简要描述。

8:最有价值的运动队

这是通过叠加数据来讲述深层故事的一个典型例子。

这个交互由Column Five设计,受福布斯“2014年***价值的运动队50强”名单得到的启发。但是它不仅将列表可视化,用户还可以通过它看到每支队伍参赛的时间以及夺得总冠军的数量。这为各队的历史和成功提供了更全面的概况信息。

9:美国风图

下面是一个类似感恩节航班的可视化图,除了图中显示的时刻,它还能实时显示美国本土的风速和风向。

它是直观设计的一个很好的案例:风速用线条移动的快慢来表示,方向通过线条移动的路径来表示。它会即时显示美国风向的总体趋势,无需任何数字,除非你在地图上点击鼠标。另外,使用时设定最多两个变量会使它更容易操作。

10:政治新闻受众渠道分布图

据Pew研究中心称,当设计师在信息内容很多又不能删的时候,他们通常会把信息放到数据表中,以使其更紧凑。但是,他们在这里使用分布图来代替。

为什么呢?因为分布图可以让观众在频谱上看到每个媒体的渠道。在分布图上,每个媒体的渠道之间的距离尤为显著。如果这些点仅仅是在表中列出,那么观众就无法看到每个渠道之间的对比效果。

11:著名创意人士的日程安排

这个数据可视化图是用奇特的想法描绘出的一个简单概念。这个表格利用Mason Currey的《日常惯例》一书中的信息展示了那些著名创意人士的日程安排,解读其时间和活动安排。这不仅是一个数据分析的例子(因为你可以通过单独的活动来浏览日程安排),也是一个品牌宣传的佳作。

12:今年发生了哪些新闻?

***的数据可视化方式,就是用直观和美丽的方式传达信息。Echelon Insights致力于这一方式,将2014年Twitter上最受关注的新闻进行了可视化。

1亿8450万条推文是什么样子?就是如下图所示的艺术品。

13:问题的深度

当你想强调规模的时候,静态数据可视化是表达你的观点的极佳方式。下面这张来自《华盛顿邮报》的信息图长得令人难以置信…这是故意的。他们在图中展示了一架飞机可以探测到的深海信号是多么的深,通过比较飞机的探测深度与高层建筑、已知哺乳动物的***深度、泰坦尼克号沉船的深度等。这是简单的视觉效果和颜色梯度的极佳使用方式。

最后,将数据添加到新闻报道中(文中为失踪的马航)是提供背景的好方式。

14:前沿预算

上述图表相对简单,以下是创造设计精致的、传递大量数据的图表的方法。秘诀何在?——用简单和干净的格式,便于读者理解数据。

这个由GOOD Magazine 和 Column Five制作的图表,解读了NASA的五年预算,显示资金将怎么花、花在哪里。此外,它还有一个主题设计,这真是一个全面成功的作品!

15: Kontakladen慈善年报

不是所有的数据可视化都需要用动画的形式来表达。当现实世界的数据通过现实生活中的例子进行可视化,结果会令人惊叹。设计师Marion Luttenberger把包含在Kontakladen慈善年报中的数据以一种独特的方法表现出来。

该组织为奥地利的吸毒者提供支持,所以Luttenberger就通过现实生活中的视觉元素来宣传他们的使命。例如,这辆购物车的形象表现出受助者每一天可以负担得起多少生活必需品。

16:奥地利太阳能年报

虽然有许多方法都能使数据可视化,但是其中,使用真实信息主体去创建数据可视化作品的做法非常了不起。这份来自Austria Solar的年度报告,通过在页面上使用太阳光感墨水,用真正的太阳能给公司数据赋予生命。

一句话总结:他们是天才。

可视化图表怎么做

方法如下:

工具/原料:华为MateBook 14、windows 10、Microsoft Office Excel 2007

1、在电脑上面打开一个制作好的Excel表格文件。

2、然后在Excel表格文件中,选中要进行可视化图表的部分,以下是对总分进行可视化图表。

3、单击菜单下面的“条件格式”选项。

4、选择“条件格式”弹出菜单中的“数据条”选项,然后再选择所需要的颜色数据条即可。

5、最后调整一下单元格的宽度,从而使可视化图表看着更直观些。

数据可视化有什么好处?

1、复杂信息易理解

人类大脑处理视觉信息的速度比书面信息快10倍。使用图表总结复杂的数据可以确保比混乱的报告或电子表格更快地理解关系。

2、数据多维度显示

在可视化分析中,数据进行分类、排序、组合并显示每个维度的值,以便可以看到表示对象或事件数据的多个属性或变量。

3、直观展示图

大数据可视化报告使我们能够用几个简短的图形,甚至一个图形来表示复杂的信息。决策者可以很容易地解释各种数据源,丰富而有意义的图形帮助忙碌的高管和业务伙伴意识到问题和悬而未决的计划。

4、突破记忆限制

事实上,当我们观察物体时,我们的大脑也有长期记忆和短期记忆。当短期记忆发生后,我们必须一遍又一遍地记忆单词、诗歌、物体时,它们才有可能进入长期记忆。

数据可视化的意义是帮助人更好的分析数据,信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,使分析结果可视化。其实数据可视化的本质就是视觉对话。

什么是经验的可视化

01如何选择合适的

可视化类型

可视化是借助图形化的方法,清晰有效地将数据展示出来。当有可视化需求时,我们应该先了解需求是什么。例如需求是查看“近六个月的销量情况”,首先我们可以确定这里会涉及两个维度展示,一个维度是时间序列(在这里是“近六个月”),另一个维度是每个月的销量。展示两个维度的可视化方法很多,例如散点图、折线图、柱状图等,在这里很显然选择折线图较为合适,为什么呢?因为折线图适合展示连续的时间序列数据,如图1所示。通过折线图,可以清晰观察出销量随时间的变化情况。该折线图对应的具体代码如下:

option = {

title: {

text: '近六个月销量情况',

left: 'center'

},

xAxis: {

type: 'category',

data: ['2020-3', '2020-4', '2020-5', '2020-6', '2020-7', '2020-8']

},

yAxis: {

type: 'value'

},

series: [{

data: [820, 932, 901, 934, 1290, 1330],

type: 'line'

}]

};

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

图1 某商品近六个月销量情况

每种可视化都有其适合的应用场合,需要在明确要展示的信息之后合理选择可视化类型。这里简单总结下:

如果需要展示数据的分布情况,可以考虑散点图、箱线图、柱状图、直方图;

如果需要展示数据的变化趋势,可以考虑折线图和双轴图;

如果需要展示对比效果,可以考虑柱状图、饼图、雷达图;

如果需要展示数据的部分与整体关系,可以考虑面积图、饼图、旭日图、堆积柱状图、矩形树图;

如果需要展示数据之间的关系,可以考虑散点图、气泡图、桑基图。

如果需要展示文本信息的重点,可以考虑词云图;

如果需要展示流程中每一步的转化情况,可以考虑漏斗图。

02可视化配色需注意什么

如果想要自己搭配色彩,其实有很多可以优化和注意的点,总结如下。

如果是新手,建议直接使用色彩主题,因为色彩主题是专业人士设置搭配的,不仅美观而且使用方便,无须自己花大量时间搭配。如果自己搭配,很可能搭配很久也得不到想要的效果,所以,如果你觉得某套色彩主题合适就大胆使用吧。ECharts提供了13种可选的色彩主题方案,如图2所示,点击左上角的下载主题即可下载使用。

图2 ECharts的色彩主题

如果需要展示的内容有着符合人类感知的颜色,建议直接使用该颜色。例如红色经常和热力图的热量大小搭配使用,蓝色和降水量搭配使用。例如,图3代表某设备在一周的不同时间的内部温度热力值,温度越高,热力值越大。从图3中可以一目了然地观察出温度***的时间是周日的上午九点(9a)。

图3 某设备在一周的不同时间的内部温度热力值

一般来说,标准的可视化看板至少需要6种颜色,如果配色不充分,在不同可视化类型中会影响表达效果。

色彩三要素包括色相、明度和饱和度。色相就是我们平时说的颜色,例如红色的花朵、绿色的树叶,这里的花朵和树叶就具有不同的色相;明度指色彩的明暗程度,也是我们平时说的颜色深浅度;而饱和度指的是色彩的鲜艳程度。当有较多数据类别需要展现时,如果只是明度的变化,例如只有明度变化的渐变色,在表示和展现不同元素单元时不能够明显区分,所以需要同时兼具色相和明度的变化,让用户通过视觉感受更好的定位元素和数据,如图4所示。

图4 同时兼具色相和明度变化的图

当只需要展示某个单一指标数值大小比较和变化时,建议使用单一颜色的渐变效果,也就是颜色明度的变化表示数值大小,一般明度越大,表示的数值越小。

当然,你不必完全遵循以上的内容,只是作为参考和建议,因为不同场景的可视化要求不同,受众不同,具体到某个场景和某个问题,有很多细节需要在实践中反复尝试并不断积累经验,搭配出更合适的色彩效果。

03追求动态和酷炫效果有错吗

做可视化时,总希望制作的内容能让人眼前一亮,于是很多人将“眼前一亮”理解为动态和色彩艳丽的酷炫效果。首先,追求动态和酷炫的效果,本身并没有什么问题,但是人们往往会因为可视化内容是动态而将注意力更多花费在动态内容上,例如某地区人口迁徙的图中有多条曲线连接迁入和迁出的地区,并加入箭头代表人们的迁入与迁出方向,但是为了酷炫,在曲线上加入某些图标(例如飞机图标)代表人口的流动方向。首先,这幅图确实十分酷炫,但是冷静下来会发现各个地区的人口流向曲线已经交叉,会影响人们看图的直观判断,如果此时你再加上动态图标,会干扰人们的观察和判断,而将图标改为光束的传播效果是不是更好呢?所以善用图标能够对一幅可视化图的表现力锦上添花,滥用也会使结果适得其反。

除了动态,酷炫的色彩也是人们常常使用的,目的是为了让可视化不再平淡无奇。例如在一个柱状图,对每一个柱子填充一种颜色。你可能会问,为什么不能用多种颜色填充呢?一种颜色太平淡了,多种颜色才能凸显这幅可视化!如果你是这样想的,那么请思考一下柱状图的目的是什么?柱状图是为了表达数据的分布情况,所以它的关注点应该是柱子的高度,而不是柱子的颜色。当然,你可以用渐变色来加强柱子高度的展示,例如柱子越高颜色越深,这是合理的。

以上只是两个常见的例子,在我们制作可视化时,对于动态和色彩的选择需要谨慎,你首先要明确为什么使用这些?使用后比使用前有什么好处?如果能回答这些问题,再去使用。

除此之外,当数据量很大时,大量动态酷炫效果可能对前端渲染提出了挑战,所以需要根据实际情况测试和使用这些特效。

关于可视化和可视化数据分析的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

发表评论
0评