奇函数和偶函数怎么判断
一、根据图像判断:
把函数图像沿y轴对折,图像能够完全重合的,就是偶函数,如:
A圆心在原点的圆
B中心在原点,长轴和短轴分别在坐标轴上的椭圆
c平行于x轴的直线
d顶点在y轴上,开口向上或向下的抛物线
二、根据函数表达式判断:
函数写成y=f(x)形式,把x全部换成-x,简化后,得到f(-x)的表达式,
当f(-x)表达式与f(x)的表达式相同时(即:f(-x)=f(x)),f(x)是偶函数。
当f(-x)表达式与-f(x)的表达式相同时(即:f(-x)=-f(x)),f(x)是奇函数。
如何区分奇函数与偶函数?
奇函数加偶函数口诀是:
1、奇函数和奇函数:相加结果为偶函数,相减结果为偶函数,相乘结果为奇函数,相除结果为奇函数。
2、偶函数和偶函数:相加结果为偶函数,相减结果为偶函数,相乘结果为偶函数,相除结果奇函数偶函数都有可能。
3、奇函数和偶函数:相加结果为奇函数,相减结果为奇函数,相乘结果为偶函数,相除结果奇函数偶函数都有可能。
4、偶函数和奇函数:相加结果为奇函数,相减结果为奇函数,相乘结果为偶函数,相除结果为偶函数。
奇函数偶函数运算法则:
1、两个偶函数相加所得的和为偶函数。
2、两个奇函数相加所得的和为奇函数。
3、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
4、两个偶函数相乘所得的积为偶函数。
5、两个奇函数相乘所得的积为偶函数。
6、一个偶函数与一个奇函数相乘所得的积为奇函数。
怎么判断函数的奇偶性
判断函数的奇偶性方法介绍如下:
1、根据奇函数和偶函数的定义进行判断
满足f(-x) = f(x),则为偶函数;满足f(-x) = -f(x),则为奇函数。
2、根据函数的图像进行判断
函数的图像关于y轴轴对称(函数的定义域一定是关于原点对称的),则为偶函数;函数的图像关于原点中心对称(函数的定义域一定是关于原点对称的),则为奇函数。
奇偶函数在对称区间上的单调性、值域特点
1、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
2、奇函数在对称区间上的值域关于原点对称,偶函数在对称区间上的值域相同。
特别的,如果一个奇函数的定义域中含有0,则必有f(0)=0。
奇偶函数怎么判断
奇偶函数的判断是按照公式来判断的。
当f(-x)=f(x)时,是偶函数,当f(-x)=-f(x)是奇函数。对于复杂的函数,可以利用函数的一些性质来方便判断。奇函数乘除奇函数还是奇函数,奇函数乘除偶函数是偶函数,偶函数乘除偶函数是偶函数。
判断函数奇偶性的方法
一、根据函数奇偶性的定义来判断
(1)一般地,设函数f(x)的定义域为I,如果对定义域内的任意一个x,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数。
(2)一般地,设函数f(x)的定义域为I,如果对定义域内的任意一个x,都有-x∈I,且f(-x)= -f(x),那么函数f(x)就叫做奇函数。
二、根据奇函数偶函数性质来判断
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
三、图像法判断函数奇偶性
1、一个函数是奇函数的充要条件是,这个函数的函数图像关于原点对称。
2、一个函数是偶函数的充要条件是,这个函数的函数图像关于y轴对称。
3、一个函数既是奇函数又是偶函数的充要条件是,这个函数的函数图像既关于原点对称又关于y轴对称。
4、一个函数是非奇非偶函数(既不是奇函数,又不是偶函数)的充要条件是,这个函数的函数图像既不关于原点对称又不关于y轴对称。
四、定义域的对称性判断函数奇偶性
1、函数具有奇偶性的前提是这个函数的定义域关于原点对称。
2、定义域不关于原点对称的函数一定是非奇非偶函数(不具有奇偶性)。
奇偶函数四则运算性质
假设两个具有奇偶性的函数的定义域的交集非空,则这两个函数的的四则运算后的奇偶性一般有如下结论成立:
1、奇函数±奇函数=奇函数。
2、偶函数±偶函数=偶函数。
3、奇函数±偶函数=非奇非偶函数。
4、偶函数±奇函数=非奇非偶函数。
5、奇函数×奇函数=偶函数。
6、偶函数×偶函数=偶函数。
7、奇函数÷奇函数=偶函数。
8、偶函数÷偶函数=偶函数。
9、奇函数×偶函数=奇函数。
10、偶函数×奇函数=奇函数。
11、奇函数÷偶函数=奇函数。
12、偶函数÷奇函数=奇函数。
关于奇函数偶函数怎么判断和什么叫函数?函数的作用是什么?的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。