1分钟前 天津物体识别方案服务周到 北京华奕互动[华奕科技58b8b74]内容:
物体识别介绍
物体识别(Object recognition)是一个通用术语,描述一组相关的计算机视觉任务,涉及识别图像中的物体。
图像分类涉及预测图像中一个对象的类别,对象定位是指识别图像一个或多个对象的位置,并在其周围绘制边框。物体识别将这两种任务结合起来,对图像中的一个或多个对象进行定位和分类,所以当人们提到物体检测或者目标检测时,其实指的是物体识别。
物体识别
此时的主流方法是只从图像本身考虑,而不去管物体原来的三维形状。这类方法统一叫做appearance based techniques。所谓appearance, 从模式识别的角度去描述的话,就是图像特征(feature),即对图像的一种抽象描述。有了图像特征,就可以在这个特征空间内做匹配,或者分类。然 而这个方法还是存在很多问题,首先它需要我们对所有的图片进行对齐,像人脸图像,就要求每一幅图中五官基本在固定的位置。但是很多应用场景下,目标并不是 像人脸那么规整,很难去做统一对齐,而且这种基于全局特征和简单欧式距离的检索方法,对复杂背景,遮挡,和几何变化等并不适用。
基于模型的物体识别方法
现在主流的物体识别的基本方法都可以集合为一类:基于模型的物体识别。基于模型的物体识别方法首先需要建立物体模型,然后使用各种匹配算法从真实的图像中识别出与物体模型较相似的物体,它的主要任务就是要从二维或三维图像抽取的特征中,寻找出与模型库中已建好的特征之间的对应关系,以此来预测物体是什么。
这个方法主要涉及到两个难点,一是如何选取合适的图像特征以及如何改进,二是如何恰当的定义物体模型并建立抽取的特征与模型库中特征的对应关系。
物体识别的困难与前景
虽然物体识别已经被广泛研究了很多年,研究出大量的技术和算法,物体识别方法的健壮性、正确性、效率以及范围得到了很大的提升,但是现在依然存在一些困难以及识别障碍。这些困难主要有:
信息载体问题:
物体本身是一个高纬信息的载体,但是图像中的物体只是物体的一个二维呈现,并且在人类目前对自己如何识别物体尚未了解清楚,也就无法给物体识别的研究提供直接的指导。目前人们所建立的各种视觉系统绝大多数是只适用于某一特定环境或应用场合的系统,而要建立一个可与人的视觉系统相比的通用视觉系统是非常困难的。